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Abstract
There has recently been interest in relating properties of matrices drawn at
random from the classical compact groups to statistical characteristics of
number-theoretical L-functions. One example is the relationship conjectured
to hold between the value distributions of the characteristic polynomials of
such matrices and value distributions within families of L-functions. These
connections are extended here to non-classical groups. We focus on an explicit
example: the exceptional Lie group G2. The value distributions for character-
istic polynomials associated with the 7- and 14-dimensional representations of
G2, defined with respect to the uniform invariant (Haar) measure, are calculated
using two of the Macdonald constant term identities. A one-parameter family
of L-functions over a finite field is described whose value distribution in the
limit as the size of the finite field grows is related to that of the characteristic
polynomials associated with the seven-dimensional representation of G2. The
random matrix calculations extend to all exceptional Lie groups.

PACS numbers: 02.10.Yn, 02.10.De, 02.20.−a

1. Introduction

Most work on the connection between random matrix theory and L-functions has concentrated
on random matrices chosen from ensembles related to the classical compact groups.
Montgomery [19], Rudnick and Sarnak [23] and Bogomolny and Keating [1, 2] calculated
the correlation functions of the zeros of the Riemann zeta-function, scaled to have unit mean
spacing, in the limit as T, the extent of the averaging range up the critical line, tends to
infinity. Their results suggest that these correlation functions coincide with those relating to
the eigenvalues of unitary matrices in the limit as the matrix size, N, tends to infinity. In the
latter case the average is defined with respect to the uniform invariant (Haar) measure on the
unitary group U(N), that is, with respect to the circular unitary ensemble (CUE) of random
matrix theory (RMT). There is extensive numerical evidence in support of this connection
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[20], which is expected to extend to the zeros of any given principal L-function. Katz and
Sarnak [15] conjectured that the distributions of low-lying zeros in families of L-functions are
the same as those of the eigenvalues of matrices from the various classical compact groups
(e.g., the orthogonal group O(N) and the symplectic group USp(2N), as well as U(N)), the
particular group in question being determined by the symmetry of the family. This is also
supported by numerical evidence [22].

It was suggested by Keating and Snaith [16] that the value distribution of a given principal
L-function on its critical line coincides, in the limit as T → ∞, with the value distribution
of the characteristic polynomials of random unitary matrices, defined again by an average
with respect to Haar measure for U(N), in the limit as N → ∞. The random matrix value
distribution was calculated in [16] by expressing the group average in terms of an integral
over the matrix eigenvalues, using a formula for the measure due to Weyl [28], and then
relating the resulting (N-dimensional) integral to the one evaluated by Selberg. This idea was
later extended in line with the Katz–Sarnak philosophy to relate the value distribution within
a given family of L-functions at the centre of the critical strip to the value distribution of
the characteristic polynomials associated with elements of the appropriate classical compact
group in the N → ∞ limit [17, 3, 4]. Again, the random matrix calculations were performed
using Weyl’s integration formula and the Selberg integral. One interesting feature of these
calculations is that in all cases the logarithm of the characteristic polynomial, normalized
appropriately (by log N), satisfies a central limit theorem in the limit N → ∞. This is in
agreement with a theorem of Selberg which states that the logarithm of the Riemann zeta-
function, normalized appropriately (by log log T ), also satisfies a central limit theorem in the
limit T → ∞. For further related developments see [10, 11, 5].

It is in this context that we now ask whether there is a connection between L-functions
and random matrices from the non-classical groups. A particularly interesting class of these
groups, closely related to the classical groups, is that of the exceptional Lie groups. Our
purpose in this paper is to point out that a number of key constructions which serve to provide
the link with random matrix theory in the classical case have analogues for the exceptional Lie
groups. We illustrate this by computing the moments and value distribution of the characteristic
polynomials of matrices associated with the 7- and 14-dimensional representations of one
particular exceptional Lie group, G2. The methods employed are again the appropriate Weyl
integration formula and generalizations of the Selberg integral conjectured by Macdonald
(and known as Macdonald constant term identities) [18], proved for G2 by Zeilberger [29]
and Habsieger [9] and by Opdam [21] in the general case. These methods extend to all of the
other exceptional Lie groups. We then describe a one-parameter family of L-functions over a
function field, whose value distribution coincides with that of the characteristic polynomials
associated with the seven-dimensional representation of G2 in the limit as the size of the finite
field grows (this was proved by Katz [14]). The link with finite fields is natural, because N is
fixed for the exceptional groups and the L-functions in question (whose zeros correspond to
eigenvalues) are polynomials.

This paper is organized as follows. In section 2 we review properties of G2 necessary
for our random matrix calculations. These calculations are performed in section 3. The
L-functions associated with G2 are constructed in section 4. In section 5 we conclude with a
brief discussion of the generalization to the other exceptional Lie groups.

2. Preliminaries about G2

As pointed out in the introduction, the exceptional Lie groups are closely related to the classical
matrix groups. One particularly natural way of seeing this relationship is via their Lie algebras.
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An important class of Lie algebras,because they form building blocks of more general algebras,
is the class of complex semi-simple Lie algebras. This class allows a complete categorization
and is elegantly summarized in the possible Dynkin diagrams which encapsulate the allowed
root systems; the root systems describe the structure constants of the Lie algebra (standard
references for this material include [7, 8, 6]). The result of the analysis is that the structure of
possible root systems is highly constrained. Indeed the only possibilities fall into four infinite
families, an, bn, cn and dn, plus five exceptional cases, g2, f4, e6, e7 and e8. Each complex Lie
algebra has a compact real form and this real form is the Lie algebra of a compact group; the
compact real forms of an, bn, cn and dn are the Lie algebras of SU(n+ 1), SO(2n+ 1), Sp(2n)

and SO(2n), respectively. The five exceptional cases are the Lie algebras of the groups
G2, F4, E6, E7 and E8. What is significant for our purposes is that many of the constructions
which exist for the classical groups have analogues for the exceptional groups.

Here, for concreteness, we will mainly focus on the smallest exceptional case, namely G2,
for which the Lie algebra is the compact real form of g2. The group G2 is the automorphism
group of the octonions, and has an embedding into SO(7).

The group is 14-dimensional and has rank 2. The six positive roots may be taken to be

α1 =
(

1
0

)
α2 =

(−3/2√
3/2

)

α3 = α1 + α2 =
(−1/2√

3/2

)
α4 = 2α1 + α2 =

(
1/2√
3/2

)
(1)

α5 = 3α1 + α2 =
(

3/2√
3/2

)
α6 = 3α1 + 2α2 =

(
0√
3

)
.

The complete set of roots is R = {±αi}, i = 1, . . . , 6. The set of short roots is RS =
{±α1,±α3,±α4}; the set of long roots is RL = {±α2,±α5,±α6}. The Weyl group W of G2

is a dihedral group with 12 elements.
Let T be a maximal torus of G2, which is isomorphic to a product of two circles S1 × S1.

Every element of G2 is conjugate in G2 to an element of T, which is unique up to conjugation
by the Weyl group.

Weyl’s integration formula reads: if dµinv(g) is the Haar probability measure on G2, dt

is the Haar probability measure on T and F is a continuous function on G2, invariant under
conjugation, then∫

G2

F(g) dµinv(g) = 1

12

∫
T

F (t)|�(t)|2 dt (2)

where

�(t) =
∑
σ∈W

(det σ)tσ (δ) = tδ
∏
α>0

(1 − t−α) (3)

(the equality is Weyl’s denominator formula), where δ is half the sum of the positive roots:

δ = 1

2

∑
α>0

α = 5α1 + 3α2. (4)

and σ(δ) means the vector obtained from δ by the Weyl group element σ . If we parametrize
a particular maximal torus by t = (t1, t2), then tα is an expression of the form t

α.e1
1 t

α.e2
2 where

e1 and e2 are (two-component) vectors; the vectors e1 and e2 and range of the parameters t1
and t2 depend on the choice of maximal torus. We derive our results below without needing
to make an explicit choice for this torus.
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For any pair of integers [n1, n2] there is an irreducible representation ρ[n1,n2] which has
highest weight λ[n1,n2] = n1ω1 + n2ω2, where ω1 = α4 and ω2 = α6 are the fundamental
weights.

The character χλ of the representation evaluated at the group element t ∈ T is

χλ(t) = Tr[ρλ(t)] =
∑

µ

dµtµ (5)

where µ are the weights of the representation and dµ is the multiplicity of the weight µ.
The character χλ(t) and dimension dλ of the representation ρλ are given by Weyl’s

formulae:

χλ(t) =
∑

σ∈W(det σ)tσ (λ+δ)∑
σ∈W(det σ)tσ (δ)

(6)

dλ =
∏

α>0(λ + δ).α∏
α>0 δ.α

. (7)

The sums in (6) are over elements σ in the Weyl group. With these conventions, the
orthogonality relation for characters is

1

12

∫
T

|�(t)|2χ[n1,n2](t)χ[m1,m2](t) dt = δn1,m1δn2,m2 . (8)

We will be particularly interested in the fundamental representations [1, 0] (induced from
the embedding of G2 into SO(7)) and [0, 1] (the adjoint representation), which have characters

χ[1,0](t) = 1 +
∑
α∈RS

tα (9)

χ[0,1](t) = 2 +
∑
α∈R

tα (10)

and dimensions

d[1, 0] = 7 d[0, 1] = 14. (11)

3. Characteristic polynomials

We will focus on the characteristic polynomials

Z(Uρ, θ) := det(1 − Uρ e−iθ ) (12)

of (unitary) matrices Uρ coming from a given representation ρ of the group. The group
elements which these matrices represent can be thought of as being chosen randomly from
the group with respect to the uniform invariant (Haar) measure. We will calculate explicit
expressions for the averages (over the group, with respect to Haar measure) of |Z|s for complex
numbers s (see [16, 17] for analogous calculation relating to U(N),O(N) and USp(2N)).

Let us first consider the modulus of Z. We wish to calculate

〈|Z(Uρ, θ)|s〉G2 =
∫

|Z(Uρ(g), θ)|s dµinv(g)

=
∫

|det(1 − Uρ(g) e−iθ )|s dµinv(g). (13)

Since the integrand is a class function, this integral reduces to an integral over the maximal
torus T:

〈|Z(Uρ, θ)|s〉G2 = 1

12

∫
T

|�(t)|2| det(1 − Uρ(t) e−iθ )|s dt . (14)
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3.1. The seven-dimensional representation

This representation is induced by the embedding of G2 as a subgroup of SO(7). From (9), we
can calculate that

Z(U[1,0], θ) = det(1 − U[1,0](t) e−iθ ) = (1 − e−iθ )
∏
α∈RS

(1 − tα e−iθ ). (15)

We see that Z has a zero at θ = 0, as is the case for the characteristic polynomial of any
odd-dimensional orthogonal matrix. Let us define Ẑ as

Ẑ(U[1,0], θ) = (1 − e−iθ )−1Z(U[1,0], θ). (16)

We now present a formula for 〈|Ẑ(U[1,0], θ)|s〉 at θ = 0.
We have that

〈|Ẑ(U[1,0], 0)|s〉G2 = 1

12

∫
T

|�(t)|2|
∏
α∈RS

(1 − tα)|s dt

= 1

12

∫
T

|�(t)|2
∏
α∈RS

(1 − tα)s dt (17)

but

|�(t)|2 =
∏
α∈R

(1 − tα) (18)

and so

〈|Ẑ(U[1,0], 0)|s〉G2 = 1

12

∫
T

∏
α∈R

(1 − tα)kα dt (19)

where

kα =
{
s + 1 if α ∈ RS

1 if α ∈ RL.
(20)

Consider first the case that s is an integer. The value of the integral (19) is then the
constant term in the expression

1

12

∏
α∈R

(1 − tα)kα . (21)

The value of this constant term is in turn one of Macdonald’s celebrated constant term
conjectures [18], proved for G2 by Zeilberger [29] and Habsieger [9] (see Opdam [21] for a
uniform proof):

(3kS + 3kL)!(2kS)!(2kL)!(3kL)!

12(2kS + 3kL)!(kS + 2kL)!(kS + kL)!(kS)!((kL)!)2
(22)

where kS (resp. kL) is the value of kα for the short (resp. long) roots.
Thus for the representation [1, 0], kS = s + 1 and kL = 1, and so for s a positive integer

or zero,

〈|Ẑ(U[1,0], 0)|s〉G2 = (3s + 6)!(2s + 2)!

(2s + 5)!(s + 3)!(s + 2)!(s + 1)!
. (23)

It follows from Carlson’s theorem (see [27]) that then

〈|Ẑ(U[1,0], 0)|s〉G2 = 
(3s + 7)
(2s + 3)


(2s + 6)
(s + 4)
(s + 3)
(s + 2)
(24)
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for Res > −3/2. To see this, note that one may deduce directly from (19) that
2−6s〈|Ẑ(U[1,0], 0)|s〉G2 is bounded when Res > 0, and from Stirling’s formula that

2−6s 
(3s + 7)
(2s + 3)


(2s + 6)
(s + 4)
(s + 3)
(s + 2)
(25)

is also bounded in the same half-plane. The function

2−6s

(
〈|Ẑ(U[1,0], 0)|s〉G2 − 
(3s + 7)
(2s + 3)


(2s + 6)
(s + 4)
(s + 3)
(s + 2)

)
(26)

is therefore regular and bounded in Res > 0, and vanishes when s is a non-negative integer.
Carlson’s theorem therefore implies (24).

Now that (24) has been established, we may immediately write down expressions for the
probability density functions associated with the value distributions of log |Ẑ(U[1,0], 0)|,

P1(x) = 1

2π

∫ ∞

−∞


(3iy + 7)
(2iy + 3)


(2iy + 6)
(iy + 4)
(iy + 3)
(iy + 2)
e−iyx dy (27)

and |Ẑ(U[1,0], 0)|,

P2(x) = 1

2π ix

∫ c+i∞

c−i∞


(3s + 7)
(2s + 3)


(2s + 6)
(s + 4)
(s + 3)
(s + 2)
x−s ds (28)

for any c > 0. One can easily deduce asymptotic properties of the probability density functions
from these integrals (see, for example, [16, 17]).

We finally note that Ẑ is real and positive at θ = 0 and so its phase there is zero.

3.2. The 14-dimensional representation

In this case the determinant Z has a double zero at θ = 0 (corresponding to the twice repeated
weight 0, see (10)). Thus we define

Ẑ(U[0,1], θ) = (1 − e−iθ )−2 det(1 − U[0,1] e−iθ ). (29)

Similar calculations to the previous case show that for s a positive integer or zero,
〈|Ẑ(U[0,1], 0)|s〉G2 is given by the constant term in

1

12

∏
α∈R

(1 − tα)kα (30)

where in this case,

kS = kL = s + 1. (31)

Thus for s a non-negative integer the Macdonald identity quoted above implies that

〈|Ẑ(U[0,1], 0)|s〉G2 = (6s + 6)!(2s + 2)!

12(5s + 5)!((s + 1)!)3
. (32)

Once again, Carlson’s theorem may be applied (in this case after multiplication by 2−12s)
to show that

〈|Ẑ(U[0,1], 0)|s〉G2 = 
(6s + 7)
(2s + 3)

12
(5s + 6)[
(s + 2)]3
(33)

for Res > −7/6. This can then be used to write down expressions for the probability density
functions associated with the value distributions of log |Ẑ(U[0,1], 0)| and |Ẑ(U[0,1], 0)|, as in
the previous section.

Also, as in the case of the representation [1, 0], the phase of Ẑ is zero.
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3.3. Other representations and θ �= 0

For other representations of G2 and for θ �= 0, the integrand is not of the form∏
α∈R

(1 − tα)kα (34)

and, as far as we are aware, closed form expressions for these integrals are not known.

4. Value distribution problems over function fields

Our purpose now is to outline the analogy between number fields and function fields over a
finite field in the context of the value distribution of zeta- and L-functions for these cases and
the predicted behaviour in terms of RMT.

It was proved by Selberg that the logarithm of the Riemann zeta-function on the critical
line has a Gaussian value distribution [24], and the same is true for all L-functions [26] under
suitable assumptions. Selberg also investigated the ‘q-analogue’ of these results for the value
distribution of the family of Dirichlet L-functions [25] at a point on the critical line and there
too obtained a Gaussian value distribution. Precisely, for q prime we have q − 2 primitive
characters χ modulo q, and for fixed t consider the q − 2 numbers

argL
(

1
2 + it, χ

)
√

1
2 log log q

(χ varies over all primitive/nonprincipal characters modulo q). Then as q → ∞, these
numbers are distributed as a standard Gaussian.

Our purpose in this section is twofold: first it is to point out that there are corresponding
results for various families of L-functions over function fields, with the role of the Gaussian
being replaced by various distributions from RMT; and second to construct an example for
which the appropriate random-matrix distribution is the G2 result calculated above.

Likewise, there are similar results for the moments of the L-functions, which in the number
field setting are mostly conjectural [16, 17, 4], but in the function field setting can sometimes
be proved.

4.1. Zeta-functions

Let k be a finite field of cardinality q and X/k a (smooth, geometrically connected, proper)
curve defined over k. The zeta-function of X/k is given by the series

Z(X; T ) = exp

( ∞∑
n=1

Nn

T n

n

)
(35)

where Nn = #X(kn) is the number of points of X over the field kn, the extension of k of degree n.
The series is absolutely convergent for |T | < 1.

Trivial example: take X = P1, the projective line. The number of points of P1 over the
finite field kn is #kn + 1 = qn + 1 and so

Z(P1; T ) = 1

(1 − qT )(1 − T )
. (36)

This zeta-function has an Euler product

Z(X; T ) =
∏
p

(1 − T deg p)−1 |T | < 1 (37)
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where p runs over all closed points of X. (In the example of P1, the closed points p correspond
to irreducible monic polynomials p(x) ∈ k[x] with the addition of the ‘point at infinity’.)

It turns out that Z(X; T ) is a rational function of T, of the form

Z(X; T ) = P(X; T )

(1 − T )(1 − qT )
(38)

with P(X; T ) ∈ 1 + T Z[T ] a monic integer polynomial of degree 2g, g being the genus of
the curve X, which we can write as P(X; T ) = ∏2g

j=1(1 −αjT ). The inverse roots αj are thus
algebraic integers. Further, there is a functional equation T �→ q/T :

Z

(
X; 1

qT

)
= q1−gT 2−2gZ(X; T ). (39)

If we set T = q−s then the functional equation translates into s �→ 1 − s.
The ‘Riemann hypothesis for curves over a finite field’ (proved in the general case by

Weil) is that all the inverse roots αj of P(X; T ) have absolute value
√

q, that is as a function
of the variable s all zeros are on the line Res = 1/2.

What is especially important for our purpose is that the polynomial P(X; T ) is the
characteristic polynomial of a matrix: there is a unique conjugacy class �X ∈ USp(2g) in
the unitary symplectic group such that P(X; T ) = det(I − q1/2T �X).

4.2. Families of curves

Now consider a ‘family’ of curves X/k. In order to study the behaviour of P(X; T ) as X
varies, it suffices to understand the distribution of the conjugacy classes �X. In several cases,
it is known that as q → ∞ these become equidistributed in USp(2g) (with respect to Haar
measure).

For instance, this is the case for the family Mg of all k-isomorphism classes of (smooth,
geometrically connected, proper) curves of given genus g [15, theorem 10.7.15].

This allows one to compute arithmetic quantities such as the moments of P(X; T ) as X
varies in Mg(k) by using the corresponding (non-arithmetic) computation in random matrix
theory for USp(2g). Thus one finds that for T fixed, say q−1T = 1, one has

lim
q→∞

1

#Mg(k)

∑
X∈Mg(k)

P (X, q1/2)s =
∫

USp(2g)

det(I − A)s dHaar(A). (40)

The moments of the characteristic polynomial in USp(2g) were computed in [17] and
are given by ∫

USp(2g)

det(I − A)s dHaar(A) = 22gs

g∏
j=1


(1 + g + j)
(1/2 + s + j)


(1/2 + j)
(1 + s + g + j)
. (41)

The probability density functions for the value distributions associated with the polynomial
and its logarithm may then be written as integrals, as in (27) and (28) [17]. In the case of the
logarithm of the characteristic polynomial, the limit distribution when g → ∞ is a Gaussian.

4.3. L-functions attached to exponential sums

We consider one-variable exponential sums constructed as follows: let k be a finite field with
q elements as above, f (x) and h(x) ∈ k(x) be rational functions, ψ a nontrivial additive
character of k (e.g., for k = Z/pZ take ψ(x) = exp(2π iax/p), 0 �= a ∈ Z/pZ) and χ a
multiplicative character of k×. Set

S(ψ, χ; f, h; q) =
∑

x

ψ(f (x))χ(h(x)) (42)



Random matrix theory, the exceptional Lie groups and L-functions 2941

the sum running over all x ∈ k which are not poles of f, h and such that h(x) �= 0. For the finite
extension kn of degree n of k, we get nontrivial characters ψn = ψ ◦Trkn/k and χn = ψ ◦Nkn/k

by composing with the trace and norm maps. Correspondingly we get exponential
sums for kn,

Sn(χ,ψ; f, h) := S(χn,ψn; f, h; qn). (43)

The L-function is defined as

L(S, T ) = exp

( ∞∑
n=1

Sn(χ,ψ; f, h)
T n

n

)
. (44)

These have an Euler product decomposition and are rational functions of T.
In many cases of interest to us, it turns out that L(T ) is in fact a polynomial of the form

det(I − q1/2T �S) with �S a unitary matrix.

4.4. Gauss sums

Given a nontrivial additive character ψ of k and a nontrivial multiplicative character χ of k×,
one defines the Gauss sum g(χ,ψ) by

g(χ,ψ) =
∑
x �=0

χ(x)ψ(x). (45)

Correspondingly we get Gauss sums for kn

gn(χ,ψ) := g(χn,ψn). (46)

To compute the L-function

L(g(χ,ψ), T ) = exp

( ∞∑
n=1

gn(χ,ψ)
T n

n

)
(47)

one can use the Hasse–Davenport relations:

−gn(χ,ψ) = (−g(χ,ψ))n. (48)

These give

L(g(χ,ψ), T ) = 1 + Tg(χ,ψ). (49)

As is well known, |g(χ,ψ)| = √
q. Thus we may write g(χ,ψ) = √

q eiθχ (we omit
the dependence on ψ which is of a trivial nature). Setting s = 1/2 + iθ/ log q, T = q−s =
q−1/2 e−iθ , we find

L(g(χ,ψ), T ) = 1 + ei(θχ−θ). (50)

The q − 2 angles {θχ : χ �= χ0} are uniformly distributed in [0, 2π) as q → ∞. This is
easy to see from Deligne’s estimate on hyper-Kloosterman sums (see [12, section 1.3.3]). Thus
the moments of L(g(χ,ψ), T ) and of its logarithm, averaged over χ and taken as q → ∞,
are the same as those for the function 1 + eiθ .

4.5. Kloosterman sums (i)

These are the sums

Kl(a, p) =
∑

x1x2=a modp

exp
2π i

p
(x1 + x2). (51)



2942 J P Keating et al

More generally for a finite field k with q elements, take a nontrivial additive character ψ and
a �= 0, and set

Kl(a, q) =
∑

x1x2=a

ψ(x1 + x2). (52)

This sum is real (replace x �→ −x), and as Weil proved satisfies

|Kl(a, q)| � 2
√

q. (53)

The associated L-function is a polynomial of degree 2,

L(Kl(a, q), T ) = 1 + Kl(a, q)T + qT 2. (54)

It is of the form det(I − q1/2T �a) with �a ∈ SU(2). It was shown by Katz [13] that as
q → ∞, the q − 1 conjugacy classes {�a : a ∈ k×} become equidistributed in SU(2) with
respect to Haar measure. This implies that we can compute the value distribution of L and
log L via RMT on SU(2).

4.6. Kloosterman sums (ii)

We next look at an example of exponential sums in several variables: hyper-Kloosterman
sums are n-variable sums (n � 2) generalizing the previous example, given by

Kln(a, q) =
∑

x1x2...xn=a

ψ(x1 + x2 + · · · + xn). (55)

Replacing ψ by ψ ◦ Trkm/k gives the sum Kln(a, qm).
The associated L-function is defined as

La(T ) := exp

(
(−1)n

∞∑
m=1

Kln(a, qm)
T m

m

)
. (56)

This L-function is a polynomial of degree n. It was proved by Katz [13] that it can be written as
det(I − q(n−1)/2T �n(a, q)), with �n(a, q) ∈ Kn, where Kn is the compact group USp(2n),

n even, SU(n), n, q odd, SO(n), q even, n �= 7 odd, and G2, q even , n = 7. Moreover, as a
varies through all nonzero elements of k, the q − 1 conjugacy classes �n(a, q) of Kn become
equidistributed there as q → ∞ while keeping the type of Kn fixed. For instance, taking
n = 7 and q = 2r , r → ∞ gives 2r − 1 conjugacy classes {�7(a, 2r) : 0 �= a ∈ F2r } which
become equidistributed in G2 as r → ∞.

4.7. An exponential sum associated with G2

Let p be a prime, p � 17, k = Z/pZ, χ(2) the unique quadratic character (Legendre symbol)
of k×, and ψ a nontrivial additive character of k, that is ψ(x) = e2π iax/p for some a ∈ k×.
Consider for t ∈ k× the exponential sum

KT (t) =
∑
x∈k×

χ(2)(x)ψ(x7 + tx). (57)

These sums were studied by Katz and the results below are due to him [14].
Note that KT (t) = χ(2)(−1)KT (t) and so KT (t) is real if χ(2)(−1) = 1, that is if

p = 1 mod 4, and imaginary if χ(2)(−1) = −1, i.e. if p = 3 mod 4.
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In view of the transformation properties under complex conjugation, we divide the
exponential sum KT (t) by the quadratic Gauss sum g(χ(2)) to get a real number. Furthermore,
there is a (unique) choice of sign εp = ±1 so that3

KT ′(t) = εp

KT (t)

g(χ(2))
(58)

is minus the trace of a matrix �t ∈ SO(7): KT (t) = −Tr�t . Moreover, this matrix turns out
to lie in G2.

The associated L-function is a polynomial of degree 7,which is a characteristic polynomial
of the element �t of G2,

L(KT ′(t), T ) = det(I − �tT ). (59)

As t varies in (Z/pZ)×, these p − 1 conjugacy classes �t become equidistributed in G2 as
p → ∞. Thus the value distribution of L(KT ′(t), T ) at fixed T is computed by RMT for G2.

5. Other Lie groups

The random matrix calculations reported here for G2 generalize straightforwardly to the other
exceptional Lie groups. In each case one has a Weyl integration formula, which allows the
moments of the characteristic polynomials associated with representations of the group to be
written as integrals over the Cartan subgroup, and a Macdonald identity, which enables the
integrals to be evaluated as ratios of 
-functions. This prompts the question as to whether
families of finite-field L-functions can be constructed whose value distributions are given by
each of the other exceptional Lie groups.

As a final remark, we note that in [18] Macdonald gives constant term formulae for
affine root systems (which are related to Kac-Moody algebras). This suggests the intriguing
possibility of extending the ideas described in this paper to families of random matrices arising
from the representations of the associated infinite-dimensional groups.
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